Strategies for the Use of Data and Algorithm Approaches in Railway Traffic Management

28 June 2021, Version 1

Abstract

Resonate are interested in looking at different strategies / models / techniques for dealing with the problem of rescheduling a railway timetable when it's unexpectedly disrupted, the likely strengths and risks of these, and how they might be adapted to improve existing solutions. Nine different approaches (drawn from machine learning, network models and stochastic models) to defining the efficiency of a station in dissipating delays were considered. They fell broadly into two groups: those that sought to understand the propagation of delays and those that sought to offer strategies for minimising delays.

Content

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.