Abstract
The development of future quantum devices such as the maser, i.e., the microwave analog the laser, could be well-served by exploration of chemically tuneable organic materials. Current iterations of room temperature organic solid-state masers are composed of an inert host material that is doped with a spin-active molecule. In this work, we have systematically modulated the structure of three nitrogen-substituted tetracene derivatives to augment their photoexcited spin dynamics and then evaluated their potential as novel maser gain media. To facilitate these investigations, we adopted an organic glass former, 1,3,5-tri(1-naphthyl)benzene (1-TNB) to act a universal host. These chemical modifications impacted the rates of intersystem crossing, triplet spin polarisation, triplet decay and spin-lattice relaxation, leading to significant consequences on the conditions required to surpass the maser threshold.
Supplementary materials
Title
Supporting Information
Description
Additional optical characterisation and analysis. Further zero-field EPR data and instrument information.
Actions



![Author ORCID: We display the ORCID iD icon alongside authors names on our website to acknowledge that the ORCiD has been authenticated when entered by the user. To view the users ORCiD record click the icon. [opens in a new tab]](https://www.cambridge.org/engage/assets/public/coe/logo/orcid.png)