Abstract
All solid-state batteries (ASSBs) based on solid-state electrolytes (SSEs) are a novel Li-ion battery technology with the potential of enhanced safety, longer lifetimes, and increased energy density when coupled with the Li-metal anode. Li-Argyrodite (Li6PS5Cl) is a promising SSE with high ionic conductivity, produced using cheap and sustainable precursors, and therefore of interest to both academia and industry. Like many other sulfide-based SSEs, it is however unstable against Li-metal. Using ab-initio and machine-learning methods, we simulate three representative Li-metal/Li-Argyrodite interface models to investigate whether the exact surface termination affects the chemical stability and ion transport capability. We present a systematic approach to create low-energy interfaces by screening 28 low Miller-index surface terminations of Li-argyrodite and coupling them with Li-metal. Custom-made machine-learned interatomic potentials trained on ab-initio data enable the simulation of large interface models with over 2000 atoms for 5 ns. We find that all three interfaces decompose into an amorphous solid-electrolyte interphase (SEI) layer, consisting of Li3P, Li2S and LiCl, which then crystallizes into an antifluorite phase Li2S{1-x-y}P{x}Cl{y}; {x,y = 0.14-0.15}. A two orders of magnitude decrease in Li-ion flux shows that the crystalline SEI layer is a sluggish ion conductor, similar to Li2S. While all three interfaces form the same crystalline SEI layer, the exact rates of the decomposition and crystallisation depend on the actual surface composition. These atomic-level insights could potentially be used to control the SEI formation in sulphide-based SSEs and others.
Supplementary materials
Title
Supplementary Information for Atomistic insights into the chemical stability and ionic transport at Li-metal/Li-Argyrodite interfaces
Description
This document includes the supporting information for the main manuscript.
Actions



![Author ORCID: We display the ORCID iD icon alongside authors names on our website to acknowledge that the ORCiD has been authenticated when entered by the user. To view the users ORCiD record click the icon. [opens in a new tab]](https://www.cambridge.org/engage/assets/public/coe/logo/orcid.png)