Abstract
Let $f:\Vc \longrightarrow \Vc $ be a Cohomological Expanding Mapping\footnote{cf Definition \ref{exp}.} of a smooth complex compact homogeneous manifold with $ dim_{\mathbb{C}}(\Vc)=k \ge 1$ and Kodaira Dimension $\leq 0$. We study the dynamics of such mapping from a probabilistic point of view, that is, we describe the asymptotic behavior of the orbit $ O_{f} (x) = \{f^{n} (x), n \in \mathbb{N} \quad \mbox{or}\quad \mathbb{Z}\}$ of a generic point. Using pluripotential methods, we construct a natural invariant canonical probability measure of maximum Cohomological Entropy $ \mu_{f} $ such that ${\chi_{2l}^{-m}} (f^m)^\ast \Omega \to \mu_f \qquad \mbox{as} \quad m\to\infty$ for each smooth probability measure $\Omega $ on $\Vc$ . Then we study the main stochastic properties of $ \mu_{f}$ and show that $ \mu_{f}$ is a measure of equilibrium, smooth, ergodic, mixing, K-mixing, exponential-mixing and the unique measure with maximum Cohomological Entropy.



![Author ORCID: We display the ORCID iD icon alongside authors names on our website to acknowledge that the ORCiD has been authenticated when entered by the user. To view the users ORCiD record click the icon. [opens in a new tab]](https://www.cambridge.org/engage/assets/public/coe/logo/orcid.png)