Abstract
Let $f:\Vc \longrightarrow \Vc $ be a Cohomological Expanding Mapping\footnote{cf Definition \ref{exp}.} of a smooth complex compact homogeneous manifold with $ dim_{\mathbb{C}}(\Vc)=k \ge 1$ and Kodaira Dimension $\leq 0$. We study the dynamics of such mapping from a probabilistic point of view, that is, we describe the asymptotic behavior of the orbit $ O_{f} (x) = \{f^{n} (x), n \in \mathbb{N} \quad \mbox{or}\quad \mathbb{Z}\}$ of a generic point. Using pluripotential methods, we construct a natural invariant canonical probability measure of maximum Cohomological Entropy $ \mu_{f} $ such that ${\chi_{2l}^{-m}} (f^m)^\ast \Omega \to \mu_f \qquad \mbox{as} \quad m\to\infty$ for each smooth probability measure $\Omega $ on $\Vc$ . Then we study the main stochastic properties of $ \mu_{f}$ and show that $ \mu_{f}$ is a measure of equilibrium, smooth, ergodic, mixing, K-mixing, exponential-mixing and the unique measure with maximum Cohomological Entropy.