P versus NP

26 December 2020, Version 2
This content is an early or alternative research output and has not been peer-reviewed by Cambridge University Press at the time of posting.

Abstract

$P$ versus $NP$ is considered as one of the most important open problems in computer science. This consists in knowing the answer of the following question: Is $P$ equal to $NP$? The precise statement of the $P$ versus $NP$ problem was introduced independently by Stephen Cook and Leonid Levin. Since that date, all efforts to find a proof for this problem have failed. Another major complexity class is $\textit{P-Sel}$. $\textit{P-Sel}$ is the class of decision problems for which there is a polynomial time algorithm (called a selector) with the following property: Whenever it's given two instances, a $``yes"$ and a $``no"$ instance, the algorithm can always decide which is the $``yes"$ instance. It is known that if $NP$ is contained in $\textit{P-Sel}$, then $P = NP$. We claim a possible selector for $3SAT$ and thus, $P = NP$.

Keywords

complexity classes
polynomial time
combinatorial optimization
reduction
logarithmic space
one-way

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting and Discussion Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.