Abstract
We define the function $\upsilon(x)=\frac{3 \times \log x+5}{8 \times \pi \times \sqrt{x}+1.2 \times \log x+2}+\frac{\log x}{\log (x + C \times \sqrt{x} \times \log \log \log x)} - 1$ for some positive constant $C$ independent of $x$. We prove that the Riemann hypothesis is false when there exists some number $y \geq 13.1$ such that for all $x \geq y$ the inequality $\upsilon(x) \leq 0$ is always satisfied. We know that the function $\upsilon(x)$ is monotonically decreasing for all sufficiently large numbers $x \geq 13.1$. Hence, it is enough to find a value of $y \geq 13.1$ such that $\upsilon(y) \leq 0$ since for all $x \geq y$ we would have that $\upsilon(x) \leq \upsilon(y) \leq 0$. Using the tool $\textit{gp}$ from the project PARI/GP, we note that $\upsilon(100!) \approx \textit{-2.938735877055718770 E-39} < 0$ for all $C \geq \frac{1}{1000000!}$. In this way, we claim that the Riemann hypothesis could be false.



![Author ORCID: We display the ORCID iD icon alongside authors names on our website to acknowledge that the ORCiD has been authenticated when entered by the user. To view the users ORCiD record click the icon. [opens in a new tab]](https://www.cambridge.org/engage/assets/public/coe/logo/orcid.png)