Abstract
Robin criterion states that the Riemann Hypothesis is true if and only if the inequality $\sigma(n) < e^{\gamma } \times n \times \log \log n$ holds for all natural numbers $n > 5040$, where $\sigma(n)$ is the sum-of-divisors function and $\gamma \approx 0.57721$ is the Euler-Mascheroni constant. Let $q_{1} = 2, q_{2} = 3, \ldots, q_{m}$ denote the first $m$ consecutive primes, then an integer of the form $\prod_{i=1}^{m} q_{i}^{a_{i}}$ with $a_{1} \geq a_{2} \geq \cdots \geq a_{m} \geq 0$ is called an Hardy-Ramanujan integer. If the Riemann Hypothesis is false, then there are infinitely many Hardy-Ramanujan integers $n > 5040$ such that Robin inequality does not hold and $n < (4.48311)^{m} \times N_{m}$, where $N_{m} = \prod_{i = 1}^{m} q_{i}$ is the primorial number of order $m$.



![Author ORCID: We display the ORCID iD icon alongside authors names on our website to acknowledge that the ORCiD has been authenticated when entered by the user. To view the users ORCiD record click the icon. [opens in a new tab]](https://www.cambridge.org/engage/assets/public/coe/logo/orcid.png)