Abstract
A sparse language is a formal language such that the number of strings of length $n$ is bounded by a polynomial function of $n$. We create a class with the opposite definition, that is a class of languages that are dense instead of sparse. We define a dense language on $m$ as a formal language (a set of binary strings) where there exists a positive integer $n_{0}$ such that the counting of the number of strings of length $n \geq n_{0}$ in the language is greater than or equal to $2^{n - m}$ where $m$ is a real number and $0 < m \leq 1$. We call the complexity class of all dense languages on $m$ as $DENSE(m)$. We prove that there exists an $\textit{NP--complete}$ problem that belongs to $DENSE(m)$ for every possible value of $0 < m \leq 1$.



![Author ORCID: We display the ORCID iD icon alongside authors names on our website to acknowledge that the ORCiD has been authenticated when entered by the user. To view the users ORCiD record click the icon. [opens in a new tab]](https://www.cambridge.org/engage/assets/public/coe/logo/orcid.png)