Abstract
The paper is a continuation of Part I. The case of “n=3” is inferred as a corollary from the Kochen and Specker theorem (1967): the eventual solutions of Fermat’s equation for “n=3” would correspond to an admissible disjunctive division of qubit into two absolutely independent parts therefore versus the contextuality of any qubit, implied by the Kochen – Specker theorem. Incommensurability (implied by the absence of hidden variables) is considered as dual to quantum contextuality. The relevant mathematical structure is Hilbert arithmetic in a wide sense, in which Hilbert arithmetic in a narrow sense and the qubit Hilbert space are dual . A few cases involving set theory are possible: (1) only within the case “n=3” and implicitly, within any next level of “n” in Fermat’s equation; (2) the identification of the case “n=3” and the general case utilizing the axiom of choice rather than the axiom of induction.



![Author ORCID: We display the ORCID iD icon alongside authors names on our website to acknowledge that the ORCiD has been authenticated when entered by the user. To view the users ORCiD record click the icon. [opens in a new tab]](https://www.cambridge.org/engage/assets/public/coe/logo/orcid.png)