Abstract
Robin's criterion states that the Riemann Hypothesis is true if and only if the inequality $\sigma(n) < e^{\gamma} \cdot n \cdot \log \log n$ holds for all natural numbers $n > 5040$, where $\sigma(n)$ is the sum-of-divisors function of $n$ and $\gamma \approx 0.57721$ is the Euler-Mascheroni constant. We require the properties of superabundant numbers, that is to say left to right maxima of $n \mapsto \frac{\sigma(n)}{n}.$ In this note, using Robin's inequality on superabundant numbers, we prove that the Riemann Hypothesis is true.



![Author ORCID: We display the ORCID iD icon alongside authors names on our website to acknowledge that the ORCiD has been authenticated when entered by the user. To view the users ORCiD record click the icon. [opens in a new tab]](https://www.cambridge.org/engage/assets/public/coe/logo/orcid.png)