Abstract
Every positive integer $l \in \mathbb{N}$ can be formed $l = (m + n)d$, provided $gcd(m,n)=1$. From this point of view, the next formulas $n=\sum_{d|l} \varphi(d)$ and $\frac{n(n+1)}{2}=\sum_{k=1}^{n} \varphi(k)[\frac{n}{k}]$, and these equivalence had been proved. In this paper on an extension of these results, the next identity is proved: $\sum_{k=1}^{n} \sum_{\substack{(a+b)c=k \\ gcd(a,b)=1}} f(a,b)\cdot g(c) = \sum_{k=1}^{n} \sum_{\substack{a+b=k \\ gcd(a,b)=1}} f(a,b) \sum_{i\leq [\frac{n}{k}]} g(i) = \sum_{a+b \leq n} f(\frac{a}{gcd(a,b)},\frac{b}{gcd(a,b)})\cdot g(gcd(a,b))$. We also show the next formulas are corollaries of it: $\sum_{k=1}^{n} \tau(k)=\sum_{k=1}^{n} [\frac{n}{k}] = \sum_{a+b \leq n} \frac{1}{\varphi(\frac{a+b}{gcd(a,b)})}$, $\sum_{d|n} f(d)\cdot g(\frac{n}{d}) = \sum_{k = 1}^{n} f(gcd(k,n))\cdot\frac{g(\frac{n}{gcd(k,n)})}{\varphi(\frac{n}{gcd(k,n)})}$, $\tau(n)=\sum_{a+b = n} \frac{1}{\varphi(\frac{a+b}{gcd(a,b)})}$, $\sum_{\substack{a+b=n \\ gcd(a,b)=1}} gcd(a-1,b+1) = \sum_{a+b=n} \frac{\varphi(n)}{\varphi(\frac{n}{gcd(a,b)})}$, and so on. In addition to it, we evaluate a sequence $\sum_{k=1}^{n} \varphi(k)\tau(k)$.



![Author ORCID: We display the ORCID iD icon alongside authors names on our website to acknowledge that the ORCiD has been authenticated when entered by the user. To view the users ORCiD record click the icon. [opens in a new tab]](https://www.cambridge.org/engage/assets/public/coe/logo/orcid.png)