Ellipses and hyperbolas of decomposition of even numbers into pairs of prime numbers

17 July 2023, Version 1
This content is an early or alternative research output and has not been peer-reviewed by Cambridge University Press at the time of posting.

Abstract

This is just an attempt to associate sums or differences of prime numbers with points lying on an ellipse or hyperbola. Certain pairs of prime numbers can be represented as radius-distances from the focuses to points lying either on the ellipse or on the hyperbola. The ellipse equation can be written in the following form: |p(k)| + |p(t)| = 2n. The hyperbola equation can be written in the following form: ||p(k)| - |p(t)|| = 2n. Here p(k) and p(t) are prime numbers (p(1) = 2, p(2) = 3, p(3) = 5, p(4) = 7,...). If we construct ellipses and hyperbolas based on the above, we get the following: 1) there are only 5 non-intersecting curves (for 2n=4; 2n=6; 2n=8; 2n=10; 2n=16). The remaining ellipses have intersection points. 2) there is only 1 non-intersecting hyperbola (for 2n=2) and 1 non-intersecting vertical line. The remaining hyperbolas have intersection points.

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting and Discussion Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.