Abstract
There are several statements equivalent to the famous Riemann hypothesis. In 2011, Solé and Planat stated that the Riemann hypothesis is true if and only if the inequality $\zeta(2) \cdot \prod_{q\leq q_{n}} (1+\frac{1}{q}) > e^{\gamma} \cdot \log \theta(q_{n})$ holds for all prime numbers $q_{n}> 3$, where $\theta(x)$ is the Chebyshev function, $\gamma \approx 0.57721$ is the Euler-Mascheroni constant, $\zeta(x)$ is the Riemann zeta function and $\log$ is the natural logarithm. In this note, using Solé and Planat criterion, we prove that the Riemann hypothesis is true.
Supplementary weblinks
Title
Accepted and Reviewed by the Conference MICOPAM 2023
Description
I am the 118th conference participant in The 6th Mediterranean International Conference of Pure & Applied Mathematics and Related Areas (MICOPAM 2023), which will be held at Université d’Evry Val d’Essonne in Paris, FRANCE on August 23–27, 2023. I am participating with the following two breakthrough papers: "On Solé and Planat Criterion for the Riemann Hypothesis" and "NP on Logarithmic Space".
Actions
View