Abstract
The Riemann Hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part $\frac{1}{2}$. In 2011, Solé and Planat stated that the Riemann hypothesis is true if and only if the inequality $\zeta(2) \cdot \prod_{q\leq q_{n}} (1+\frac{1}{q}) > e^{\gamma} \cdot \log \theta(q_{n})$ holds for all prime numbers $q_{n}> 3$, where $\theta(x)$ is the Chebyshev function, $\gamma \approx 0.57721$ is the Euler-Mascheroni constant, $\zeta(x)$ is the Riemann zeta function and $\log$ is the natural logarithm. We prove that the Riemann Hypothesis is true using this criterion.
Supplementary weblinks
Title
Presentation at the Conference MICOPAM 2023 (Draft)
Description
I am the 118th conference participant in The 6th Mediterranean International Conference of Pure & Applied Mathematics and Related Areas (MICOPAM 2023), which will be held at Université d’Evry Val d’Essonne in Paris, FRANCE on August 23–27, 2023. I am participating with the following two breakthrough papers: "On Solé and Planat Criterion for the Riemann Hypothesis" and "NP on Logarithmic Space".
Actions
View