On Nicolas Criterion for the Riemann Hypothesis

16 November 2023, Version 3
This content is an early or alternative research output and has not been peer-reviewed by Cambridge University Press at the time of posting.

Abstract

The Riemann hypothesis is the assertion that all non-trivial zeros are complex numbers with real part $\frac{1}{2}$. It is considered by many to be the most important unsolved problem in pure mathematics. There are several statements equivalent to the famous Riemann hypothesis. For $x \geq 2$, the function $f$ was introduced by Nicolas in his seminal paper as $f(x) = e^{\gamma} \cdot \log\theta(x) \cdot \prod_{q \leq x} \left(1 - \frac{1}{q} \right)$, where $\theta(x)$ is the Chebyshev function, $\gamma \approx 0.57721$ is the Euler-Mascheroni constant and $\log$ is the natural logarithm. In 1983, Nicolas stated that if the Riemann hypothesis is false then there exists a real number $b$ with $0 < b < \frac{1}{2}$ such that, as $x\to \infty$, $\log f(x)=\Omega_{\pm }(x^{-b})$. In this note, using the Nicolas criterion, we prove that the Riemann hypothesis is true.

Keywords

Riemann hypothesis
Riemann zeta function
Chebyshev function
prime numbers

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting and Discussion Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.