Criterion for the Riemann Hypothesis

28 November 2023, Version 3
This content is an early or alternative research output and has not been peer-reviewed by Cambridge University Press at the time of posting.

Abstract

Let $\Psi(n) = n \cdot \prod_{q \mid n} \left(1 + \frac{1}{q} \right)$ denote the Dedekind $\Psi$ function where $q \mid n$ means the prime $q$ divides $n$. Define, for $n \geq 3$; the ratio $R(n) = \frac{\Psi(n)}{n \cdot \log \log n}$ where $\log$ is the natural logarithm. Let $M_{x} = \prod_{q \leq x} q$ be the product extending over all prime numbers $q$ that are less than or equal to a natural number $x \geq 2$. The Riemann hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part $\frac{1}{2}$. It is considered by many to be the most important unsolved problem in pure mathematics. There are several statements equivalent to the Riemann hypothesis. We state that if the Riemann hypothesis is false, then there exist infinitely natural numbers $x$ such that the inequality $R(M_{x}) < \frac{e^{\gamma}}{\zeta(2)}$ holds, where $\gamma \approx 0.57721$ is the Euler-Mascheroni constant and $\zeta(x)$ is the Riemann zeta function. In this note, using our criterion, we prove that the Riemann hypothesis is true.

Keywords

Riemann hypothesis
prime numbers
Riemann zeta function
Chebyshev function

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting and Discussion Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.