New Criterion for the Riemann Hypothesis

09 December 2023, Version 2
This content is an early or alternative research output and has not been peer-reviewed by Cambridge University Press at the time of posting.

Abstract

The Riemann hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part $\frac{1}{2}$. It is considered by many to be the most important unsolved problem in pure mathematics. Let $\Psi(n) = n \cdot \prod_{q \mid n} \left(1 + \frac{1}{q} \right)$ denote the Dedekind $\Psi$ function where $q \mid n$ means the prime $q$ divides $n$. Define, for $n \geq 3$; the ratio $R(n) = \frac{\Psi(n)}{n \cdot \log \log n}$ where $\log$ is the natural logarithm. Let $N_{n} = 2 \cdot \ldots \cdot q_{n}$ be the primorial of order $n$. There are several statements equivalent to the Riemann hypothesis. We state that if for each large enough prime number $q_{n}$, there exists another prime $q_{n'} > q_{n}$ such that $R(N_{n'}) \leq R(N_{n})$, then the Riemann hypothesis is true. In this note, using our criterion, we prove that the Riemann hypothesis is true.

Keywords

Elementary Number Theory
Riemann hypothesis
prime numbers
Riemann zeta function
Chebyshev function

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting and Discussion Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.