We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings. Learn more about our Privacy Notice... [opens in a new tab]

Decoding Multilingual Topic Dynamics and Trend Identification through ARIMA Time Series Analysis on Social Networks: A Novel Data Translation Framework Enhanced by LDA/HDP Models

31 March 2025, Version 1
This content is an early or alternative research output and has not been peer-reviewed by Cambridge University Press at the time of posting.

Abstract

In this study, the authors present a novel methodology adept at decoding multilingual topic dynamics and identifying communication trends during crises. We focus on dialogues within Tunisian social networks during the Coronavirus Pandemic and other notable themes like sports and politics. We start by aggregating a varied multilingual corpus of comments relevant to these subjects. This dataset undergoes rigorous refinement during data preprocessing. We then introduce our No-English-to-English Machine Translation approach to handle linguistic differences. Empirical tests of this method showed high accuracy and F1 scores, highlighting its suitability for linguistically coherent tasks. Delving deeper, advanced modeling techniques, specifically LDA and HDP models are employed to extract pertinent topics from the translated content. This leads to applying ARIMA time series analysis to decode evolving topic trends. Applying our method to a multilingual Tunisian dataset, we effectively identified key topics mirroring public sentiment. Such insights prove vital for organizations and governments striving to understand public perspectives during crises. Compared to standard approaches, our model outperforms, as confirmed by metrics like Coherence Score, U-mass, and Topic Coherence. Additionally, an in-depth assessment of the identified topics revealed notable thematic shifts in discussions, with our trends identification indicating impressive accuracy, backed by RMSE-based analysis.

Keywords

Pandemic Governance
Social Media
Multilingual Topic Modeling
Trends Identification
Data Translation
Thematic Patterns
ARIMA
Time Series Analysis

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting and Discussion Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.