Note for the Beal's Conjecture

03 June 2024, Version 3
This content is an early or alternative research output and has not been peer-reviewed by Cambridge University Press at the time of posting.

Abstract

This work explores two famous conjectures in number theory: Fermat's Last Theorem and Beal's Conjecture. Fermat's Last Theorem, posed by Pierre de Fermat in the 17th century, states that there are no positive integer solutions for the equation $a^{n} + b^{n} = c^{n}$, where $n$ is greater than $2$. This theorem remained unproven for centuries until Andrew Wiles published a proof in 1994. Beal's Conjecture, formulated in 1997 by Andrew Beal, generalizes Fermat's Last Theorem. It states that for positive integers $A$, $B$, $C$, $x$, $y$, and $z$, if $A^{x} + B^{y} = C^{z}$ (where $x$, $y$, and $z$ are all greater than $2$), then $A$, $B$, and $C$ must share a common prime factor. Beal's Conjecture remains unproven, and a significant prize is offered for a solution. This paper provides a concise introduction to both conjectures, highlighting their connection and presenting a short proof of the Beal's Conjecture.

Keywords

Generalized Fermat Equation
prime numbers
binomial theorem
coprime numbers

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting and Discussion Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.