Note for the Small Gaps

03 June 2024, Version 1
This content is an early or alternative research output and has not been peer-reviewed by Cambridge University Press at the time of posting.

Abstract

A prime gap is the difference between two successive prime numbers. The nth prime gap, denoted $g_{n}$ is the difference between the (n + 1)st and the nth prime numbers, i.e. $g_{n}=p_{n+1}-p_{n}$. A twin prime is a prime that has a prime gap of two. The twin prime conjecture states that there are infinitely many twin primes. There isn't a verified solution to twin prime conjecture yet. In this note, using the Chebyshev function, we prove that $\liminf_{n\to \infty }{\frac {g_{n}+g_{n-1}}{\log (p_{n}) + \log (p_{n} + 2)}} \geq 1,$ under the assumption that the twin prime conjecture is false. It is well-known the proof of Daniel Goldston, J{\'a}nos Pintz and Cem Yildirim which implies that $\liminf_{n\to \infty }{\frac {g_{n}}{\log p_{n}}}=0$. In this way, we reach an intuitive contradiction. Consequently, by reductio ad absurdum, we can conclude that the twin prime conjecture is true.

Keywords

prime gaps
prime numbers
Chebyshev function
primorial numbers

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting and Discussion Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.