A Note on Fermat's Equation

20 June 2024, Version 1
This content is an early or alternative research output and has not been peer-reviewed by Cambridge University Press at the time of posting.

Abstract

Around $1637$, Pierre de Fermat famously scribbled, and claimed to have a proof for, his statement that equation $a^{n} + b^{n} = c^{n}$ has no positive integer solutions for exponents $n>2$. The theorem stood unproven for centuries until Andrew Wiles' groundbreaking work in $1994$, with a notable caveat: Wiles' proof, while successful, relied on modern tools far beyond Fermat's claimed approach in terms of complexity. The present work potentially offers a solution which is closer in spirit to Fermat's original idea. The same tools designed to this effect are then used to prove the Beal conjecture, a well-known generalization of Fermat's Last Theorem.

Keywords

Fermat's Equation
Prime Numbers
Linear Diophantine Equations
Binomial Theorem

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting and Discussion Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.