Note for the Riemann Hypothesis

12 July 2024, Version 3
This content is an early or alternative research output and has not been peer-reviewed by Cambridge University Press at the time of posting.

Abstract

Let $\Psi(n) = n \cdot \prod_{q \mid n} \left(1 + \frac{1}{q} \right)$ denote the Dedekind $\Psi$ function where $q \mid n$ means the prime $q$ divides $n$. Define, for $n \geq 3$; the ratio $R(n) = \frac{\Psi(n)}{n \cdot \log \log n}$ where $\log$ is the natural logarithm. Let $N_{n} = 2 \cdot \ldots \cdot q_{n}$ be the primorial of order $n$. A trustworthy proof for the Riemann hypothesis has been considered as the Holy Grail of Mathematics by several authors. The Riemann hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part $\frac{1}{2}$. There are several statements equivalent to the famous Riemann hypothesis. We show if the inequality $R(N_{n+1}) < R(N_{n})$ holds for $n$ big enough, then the Riemann hypothesis is true. In this note, we prove that $R(N_{n+1}) < R(N_{n})$ always holds for $n$ big enough.

Keywords

Riemann hypothesis
Prime numbers
Riemann zeta function
Chebyshev function

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting and Discussion Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.