Abstract
Abstract of Taha's 2nd Solution of Collatz Sequence
let Collatz Sequence of (r)=S(r)
let Collatz Sequence loop of (r)=lS(r)
S(n)={(n/2)=k≤n-1,…,(h) or…},n∈N_even,k,h∈N_+⋯Fact 1
S(n)={(n/2)or (3n+1),…}⇒S(n)⊇S((n/2) or (3n+1) ),n∈N_+⋯Fact 2
⇒ lS(n)= lS((n/2) or (3n+1) )…Fact 3
Example: S(5)={16,8,4,2,1}⇒
∴S(5)⊇S(16)⊇S(8)⊇S(4)⊇S(2)⊇ S(1)…Fact 1⇒
lS(5)=lS(16)=lS(8)=lS(4)=lS(2)=lS(1)…Fact 2