Abstract
1- I chose a box of different dimensions. H = a, W = a + r, L = a + k, and (k ≠ r ≠ a)
Substitute in equation: g^2 =a^2 +b^2 +c^2,
g ∈ N+ ⇒ a =r = k … contradiction to (k ≠ r ≠ a)
If (k ≠ r ≠ a) ⇒ g ∉ N+
2- If W = L, or W = L = H ⇒ d (diagonal) ∉ N+
∴ from all above the Euler Perfect Box doesn’t exist.