Abstract
Let g^2 = a^2 + b^2 + c^2 be complete square
ar
Then g^2 = a^2 + (a+r)^2 +(a+k)^2 ...eq1 and
I create same g^2 = a^2 + 2a(a+k) +(a+k)^2 ...eq2 complete square.
then (a+r)^2 = 2a(a+k) and by substitution I proved
(a+r)^2 = 2a(a+k) is false
Then g^2 = a^2 + (a+r)^2 +(a+k)^2 is not squre, g is not integer,
Euler Perfect Box does not exist.