Abstract
This research employs quantitative techniques interpreted through relevant economic theories to analyze a proposed U.S. "Discounted Reciprocal Tariff" structure. Statistical modeling (linear regression) quantifies the policy's consistent 'discounted reciprocity' pattern, which is interpreted using a Game Theory perspective on strategic interaction. Machine learning (K-Means clustering) identifies distinct country typologies based on tariff exposure and Economic Complexity Index (ECI), linking the policy to Economic Complexity theory. The study's primary application focuses on the major coffee exporting sector, utilizing simulation modeling grounded in principles of demand elasticity and substitution to project potential trade flow impacts. Specifically, for coffee, this simulation demonstrates how the proposed tariff differentials can induce significant substitution effects, projecting a potential shift in U.S. import demand away from high-tariff origins toward lower-tariff competitors. This disruption, stemming from the tariffs impacting exporting countries, is projected to ultimately increase coffee prices for consumers in the United States. Findings throughout are contextualized within Political Economy considerations. Overall, the study demonstrates how integrating regression, clustering, and simulation with economic theory—exemplified through the coffee sector analysis—provides a robust framework for assessing the potential systemic impacts, including consumer price effects, of strategic trade policies.