Abstract
Abstract of Euler Perfect Box (Final)
a, b, c, d, e, f, g ∈ N_+ ⟺ Euler Perfect Box
Let a, b, c, d, e, f, r, k ∈N_+.
I have to prove that g ∈N_+
Let a < b < c, & [(a < r< k), or (a > r, and r < k)] ⇒ a ≠ r ≠ k
& let b=a + r, c = a+ k
g ^2=a^2 +b^2 +c^2
∴ g ^2=a^2 +(a + r) ^2 +(a + k) ^2
Let g^2= [a^2 + (a + r) ^2 +(a + 2] ∈NS)
∵ [a^2+2a (a + k) + (a + k) ^2] ∈NS)
∴ (a + r) ^2= 2a (a + k) ⇔ a = r = k …Contradiction to a≠ r ≠k
⇒ (a + r) ^2 ≠ 2(a + k) for all a, r, k ∈N+)/{a=r=k}.
∴g ^2 = [a^2 +(a + r) ^2 +(a + k) ^2] ∉ N_ (S) ⇒ g^2 ∉ NS) ⇒g ∉ N+)
∴ The Euler Perfect Box does not exist