Abstract
We introduce a family of parametrized non-autonomous linear complex differential equations on $[1,\infty)$, depending on a complex parameter $w$ in the strip $\Re(w)\in (0,1)$. Their dynamics encodes subtle asymptotic features of a real bounded forcing term. Under a mild integrability condition, we establish a rigidity phenomenon: for every parameter $w$ with $\Re(w) \in (0,1)\setminus\{\tfrac12\}$, the two solutions corresponding respectively to $w$ and $1-\bar w$, both taken with initial condition $1$, cannot be simultaneously bounded on $[1,+\infty)$. This result apporte une réponse à la Conjecture Dynamique formulée dans \cite{Oukil} et met en évidence une asymétrie structurelle dans la dépendance des solutions au paramètre complexe, contribuant ainsi à une meilleure compréhension du comportement qualitatif de cette classe de systèmes différentiels.



![Author ORCID: We display the ORCID iD icon alongside authors names on our website to acknowledge that the ORCiD has been authenticated when entered by the user. To view the users ORCiD record click the icon. [opens in a new tab]](https://www.cambridge.org/engage/assets/public/coe/logo/orcid.png)