Statistical modelling and optimization for designing renewable energy systems

22 December 2025, Version 1
This content is an early or alternative research output and has not been peer-reviewed by Cambridge University Press at the time of posting.

Abstract

We explore the optimal allocation of solar, wind, and battery resources for large-scale renewable energy production and transmission. Using a combination of statistical modelling and optimization techniques, we analyze historical and synthetic power generation data to identify cost-effective investment strategies. To generate synthetic long-term scenarios, we extract seasonal trends from historical data and apply bootstrapping techniques to preserve statistical properties while simulating future variability. We employ a two-step optimization approach, first using a global method to identify the most promising region, followed by a local method for refinement. We compare single-year solutions and analyze their generalizability. 15-year and 100-year forecasts indicate that solutions incorporating long-term variability lead to more resilient planning. We find that the optimal mix of solar and wind remains stable across different time horizons, while battery storage varies to account for intermittency.

Keywords

Statistical modelling
Optimization
Time series
Forecasting

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting and Discussion Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.
Comment number 1, Razil Valiev: Dec 25, 2025, 16:18

Работа вносит значительный вклад в теорию и практику планирования ВИЭ, демонстрируя, что устойчивая энергосистема будущего требует не только правильного соотношения источников, но и адаптивной стратегии в отношении накопления энергии, основанной на долгосрочном прогнозировании. Данное исследование открывает путь для учета дополнительных факторов, таких как изменение климата, эволюция технологий и стоимости, а также интеграция с существующей сетевой инфраструктурой.