Abstract
The Riemann Hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part $\frac{1}{2}$. In 2011, Sol{\'e} and and Planat stated that the Riemann Hypothesis is true if and only if $\frac{\pi^2}{6} \times \prod_{q\leq q_{n}}\left(1+\frac{1}{q} \right) >e^{\gamma}\times \log\theta(q_{n})$ is satisfied for all primes $q_{n}> 3$, where $\theta(x)$ is the Chebyshev function, $\gamma\approx 0.57721$ is the Euler-Mascheroni constant and $\log$ is the natural logarithm. We state the conjecture that $\frac{\pi^2}{6.4} \times \prod_{q \leq q_{n}} \left(1 + \frac{1}{q} \right) > e^{\gamma} \times \log\theta(q_{n})$ is satisfied for all primes $q_{n}> 10^{8}$. Under the assumption of this conjecture, we prove that there is not any odd perfect number at all.



![Author ORCID: We display the ORCID iD icon alongside authors names on our website to acknowledge that the ORCiD has been authenticated when entered by the user. To view the users ORCiD record click the icon. [opens in a new tab]](https://www.cambridge.org/engage/assets/public/coe/logo/orcid.png)