Note on the Odd Perfect Numbers

15 July 2022, Version 10
This content is an early or alternative research output and has not been peer-reviewed by Cambridge University Press at the time of posting.

Abstract

The Riemann Hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part $\frac{1}{2}$. In 2011, Sol{\'e} and and Planat stated that the Riemann Hypothesis is true if and only if the inequality $\frac{\pi^2}{6} \times \prod_{q\leq q_{n}}\left(1+\frac{1}{q} \right) > e^{\gamma} \times \log\theta(q_{n})$ is satisfied for all primes $q_{n}> 3$, where $\theta(x)$ is the Chebyshev function and $\gamma\approx 0.57721$ is the Euler-Mascheroni constant. Under the assumption that the Riemann Hypothesis is true and the inequality $\frac{\pi^2}{\beta} \times \prod_{q \leq q_{n}} \left(1 + \frac{1}{q} \right) > e^{\gamma} \times \log\theta(q_{n})$ is satisfied for infinitely many prime numbers $q_{n}$ and $\beta \geq 6.0008$, then we prove that there is not any odd perfect number at all.

Keywords

Riemann Hypothesis
Prime numbers
Odd perfect numbers
Superabundant numbers
Sum-of-divisors function

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting and Discussion Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.