Two Major Conjectures on Prime Numbers

09 January 2024, Version 1
This content is an early or alternative research output and has not been peer-reviewed by Cambridge University Press at the time of posting.

Abstract

The Riemann hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part $\frac{1}{2}$. It is considered by many to be the most important unsolved problem in pure mathematics. In addition, the Cram{\'e}r's conjecture states that $q_{n+1}-q_{n}=O((\log q_{n})^{2})$, where $q_{n}$ denotes the nth prime number, $O$ is big $O$ notation, and $\log$ is the natural logarithm. Let $\Psi(n) = n \cdot \prod_{q \mid n} \left(1 + \frac{1}{q} \right)$ denote the Dedekind $\Psi$ function where $q \mid n$ means the prime $q$ divides $n$. Define, for $n \geq 3$; the ratio $R(n) = \frac{\Psi(n)}{n \cdot \log \log n}$. Let $N_{n} = 2 \cdot \ldots \cdot q_{n}$ be the primorial of order $n$. There are several statements equivalent to the Riemann hypothesis. We state that if the inequality $R(N_{n+1}) < R(N_{n})$ holds for all primes $q_{n}$ (greater than some threshold), then the Riemann hypothesis is true and the Cram{\'e}r's conjecture is false. In this note, using our criterion, we prove that the inequality always holds for all primes $q_{n}$ (greater than some threshold).

Keywords

Riemann hypothesis
Cramér's conjecture
prime numbers
Riemann zeta function
Chebyshev function

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting and Discussion Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.