Two Major Conjectures on Prime Numbers

23 January 2024, Version 3
This content is an early or alternative research output and has not been peer-reviewed by Cambridge University Press at the time of posting.

Abstract

Let $\Psi(n) = n \cdot \prod_{q \mid n} \left(1 + \frac{1}{q} \right)$ denote the Dedekind $\Psi$ function where $q \mid n$ means the prime $q$ divides $n$. Define, for $n \geq 3$; the ratio $R(n) = \frac{\Psi(n)}{n \cdot \log \log n}$ where $\log$ is the natural logarithm. Let $N_{n} = 2 \cdot \ldots \cdot q_{n}$ be the primorial of order $n$. We state that if the inequality $R(N_{n+1}) < R(N_{n})$ holds for all primes $q_{n}$ (greater than some threshold), then the Riemann hypothesis is true and the Cram{\'e}r's conjecture is false. In this note, we prove that the previous inequality always holds for all sufficiently large primes $q_{n}$.

Keywords

Riemann hypothesis
Cramér's conjecture
prime numbers
Riemann zeta function
Chebyshev function

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting and Discussion Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.