The Riemann Hypothesis

26 March 2021, Version 6
This content is an early or alternative research output and has not been peer-reviewed by Cambridge University Press at the time of posting.

Abstract

In mathematics, the Riemann Hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part $\frac{1}{2}$. In 2002, Lagarias proved that if the inequality $\sigma(n) \leq H_{n} + exp(H_{n}) \times \log H_{n}$ holds for all $n \geq 1$, then the Riemann Hypothesis is true, where $\sigma(n)$ is the sum-of-divisors function and $H_{n}$ is the $n^{th}$ harmonic number. We prove this inequality holds for all $n \geq 1$ and therefore, the Riemann Hypothesis must be true.

Keywords

number theory
inequality
sum-of-divisors function
harmonic number
prime

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting and Discussion Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.