The Riemann Hypothesis

26 July 2021, Version 15
This content is an early or alternative research output and has not been peer-reviewed by Cambridge University Press at the time of posting.

Abstract

For every prime number $p_{n}$, we define the sequence $X_{n} = \frac{\prod_{q \mid N_{n}} \frac{q}{q-1}}{e^{\gamma} \times \log\log N_{n}}$, where $N_{n} = \prod_{k = 1}^{n} p_{k}$ is the primorial number of order $n$ and $\gamma \approx 0.57721$ is the Euler-Mascheroni constant. The Nicolas theorem states that the Riemann hypothesis is true if and only if the $X_{n} > 1$ holds for all prime $p_{n} > 2$. For every prime number $p_{k}$, $X_{k} > 1$ is called the Nicolas inequality. We show if the sequence $X_{n}$ is strictly decreasing for $n$ big enough, then the Riemann hypothesis should be true. Moreover, we demonstrate that the sequence $X_{n}$ is indeed strictly decreasing when $n \to \infty$. Notice that, Choie, Planat and Sol{\'e} in the preprint paper arXiv:1012.3613 have a proof that the Cram{\'e}r conjecture is false when $X_{n}$ is strictly decreasing for $n$ big enough. This paper is an extension of their result.

Keywords

Riemann hypothesis
Nicolas theorem
Prime numbers
Chebyshev function
Monotonicity

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting and Discussion Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.