Abstract
For every prime number $p_{n}$, we define the sequence $X_{n} = \frac{\prod_{q \mid N_{n}} \frac{q}{q-1}}{e^{\gamma} \times \log\log N_{n}}$, where $N_{n} = \prod_{k = 1}^{n} p_{k}$ is the primorial number of order $n$ and $\gamma \approx 0.57721$ is the Euler-Mascheroni constant. The Nicolas theorem states that the Riemann hypothesis is true if and only if the $X_{n} > 1$ holds for all prime $p_{n} > 2$. For every prime number $p_{k}$, $X_{k} > 1$ is called the Nicolas inequality. We show if the sequence $X_{n}$ is strictly decreasing for $n$ big enough, then the Riemann hypothesis should be true. Moreover, we demonstrate that the sequence $X_{n}$ is indeed strictly decreasing when $n \to \infty$. Notice that, Choie, Planat and Sol{\'e} in the preprint paper arXiv:1012.3613 have a proof that the Cram{\'e}r conjecture is false when $X_{n}$ is strictly decreasing for $n$ big enough. This paper is an extension of their result.



![Author ORCID: We display the ORCID iD icon alongside authors names on our website to acknowledge that the ORCiD has been authenticated when entered by the user. To view the users ORCiD record click the icon. [opens in a new tab]](https://www.cambridge.org/engage/assets/public/coe/logo/orcid.png)