Abstract
Let's define $\delta(x) = (\sum_{{q\leq x}}{\frac{1}{q}}-\log \log x-B)$, where $B \approx 0.2614972128$ is the Meissel-Mertens constant. The Robin theorem states that $\delta(x)$ changes sign infinitely often. Let's also define $S(x) = \theta(x) - x$, where $\theta(x)$ is the Chebyshev function. A theorem due to Erhard Schmidt implies that $S(x)$ changes sign infinitely often. Using the Nicolas theorem, we prove that when the inequalities $\delta(p) \leq 0$ and $S(p) \geq 0$ are satisfied for a prime $p \geq 127$, then the Riemann Hypothesis should be false. However, we could restate the Mertens second theorem as $\lim_{{n\to \infty }} \delta(p_{n}) = 0$ where $p_{n}$ is the $n^{th}$ prime number. In addition, we could modify the well-known formula $\lim_{{n \to \infty }} \frac{\theta(p_{n})}{p_{n}} = 1$ as $\lim_{{n\to \infty }} S(p_{n}) = 0$. In this way, this work could mean a new step forward in the direction for finally solving the Riemann Hypothesis.



![Author ORCID: We display the ORCID iD icon alongside authors names on our website to acknowledge that the ORCiD has been authenticated when entered by the user. To view the users ORCiD record click the icon. [opens in a new tab]](https://www.cambridge.org/engage/assets/public/coe/logo/orcid.png)